Exercise Sheet 2

Problem 5:

Consider the feedback loop with the reference signal r and the input disturbance signal d_i . The controller and plant transfer functions are

- **a.** Is the feedback loop internally stable for K = 1 and K = 14?
- **b.** Which steady-state output for reference steps do you expect for K = 1 and K = 14?
- c. Which steady-state output for the response to disturbance steps do you expect for K = 1and K = 14?
- **d.** Simulate the reference step response and disturbance step response for K = 1 and K = 14 and verify the results in **a**. to **c**.
- e. Now compare the controllers for K = 1 and K = 14. Which controller achieves better reference tracking/disturbance rejection?

Problem 6:

We perform a speed control experiment with a DC motor.

- **a.** Download the Simulink model of the DC motor from the course webpage. The input signal is the supply voltage u and the output signal is the rotational velocity ω . In addition, there is a disturbance signal T_L which represents a load torque.
- **b.** Perform step responses for u (1 V) and M_L (10⁻³ Nm) and plot the result. Use the parameter values in the following table ($J_a = J_L + J_M$).

J_L	J_M	R_a	L_a	$c\Phi_F$
$2 \cdot 10^{-6} \mathrm{kg} \mathrm{m}^2$	$1 \cdot 10^{-6} \mathrm{kg} \mathrm{m}^2$	$10 \ \Omega$	2 mH	$0,05 \ \frac{Nm}{A}$

Put the DC motor plant model in a feedback loop. Choose $C(s) = 1781 \cdot \frac{8.14 \cdot 10^{-4} s + 1}{s}$. Observe the step response to a reference step r = 20 rad/sec and a disturbance step of M_L (10^{-3} Nm) .

- c. Is the feedback loop internally stable?
- d. Are the closed-loop poles complex or real? Justify your answer!