Control System Design

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Elective Course in Mechatronics Engineering Credits (2/2/3)

Webpage: http://MECE441.cankaya.edu.tr

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Block Diagrams

Feedback Loop

Linear State Space Models

Department

Block Diagrams: Description

Characteristics of the Block Diagram

A block diagram is a graphical representation of the cause-effect relationship between signals by blocks and directed lines

 \Rightarrow Visualization of direction of action and interdependencies

Block Diagram Components

- Directed Lines: System signals and their direction of action
- Circles: Summation of signals
- Rectangles: Dynamic relationship between signals; in our case by transfer functions
 - \Rightarrow Rectangles and circles are transfer blocks

Gap 1

Block Diagrams

Feedback Loop

Linear State Space Models

Block Diagrams: Connection Rules

Summation 2

Equivalent Representation

Block Diagrams: Simplification Example

Simplification

Gap 3

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Block Diagrams

Feedback Loop

Linear State Space Models

Feedback Loop: Basics

Block Diagram

Gap 4

Department

Explanation

- Input signal: *u*; output signal: *y*
- Reference signal: r; error signal e = r y
- Output disturbance: *d*; input disturbance: *d*_i
- Plant transfer function G
- Controller transfer function C

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Feedback Loop: Sensitivities

Example

Gap 5

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Block Diagrams

Feedback Loop

Linear State Space Models

Department

Feedback Loop: Stability

Sensitivities

• Complementary Sensitivity: $T(s) := \frac{Y(s)}{R(s)} = \frac{C(s)G(s)}{1+C(s)G(s)}$ • Sensitivity: $S(s) := \frac{Y(s)}{D(s)} = \frac{1}{1+C(s)G(s)}$ • Input Disturbance Sensitivity: $S_i(s) = \frac{Y(s)}{D_i(s)} = \frac{G(s)}{1+C(s)G(s)}$ • Control Sensitivity: $S_u(s) = \frac{U(s)}{R(s)} = \frac{C(s)}{1+C(s)G(s)}$ Stability Test

All signals in the feedback loop should remain bounded

 \Rightarrow Internal stability: all sensitivities must be stable

Equivalent Stability Test

• 1 + G(s) C(s) must only have zeros in the OLHP Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Department

Feedback Loop: Stability

Example

Gap 6

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Block Diagrams

Feedback Loop

Linear State Space Models

Department

Feedback Loop: Reference Tracking

Desired Behavior

• Consider $\frac{Y(s)}{R(s)} = T(s) = \frac{C(s) G(s)}{1 + C(s) G(s)}$ \rightarrow Ideally, the output signal should exactly follow (track) the reference signal: y(t) = r(t) and T(s) = 1 \rightarrow In practice, we try to design C(s) such that $T(s) \approx 1$

Gap 7

Feedback Loop: Reference Tracking

Steady-state Error $\lim_{t\to\infty} e(t)$ after Reference Steps

The steady state error should converge to zero or at least be small

Final Value Theorem of the Laplace Transform

$$\lim_{t\to\infty}x(t)=\lim_{s\to0}s\,X(s)$$

Final Value of the Step Response (stable G)

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} s Y(s) = \lim_{s \to 0} s G(s)U(s) = \lim_{s \to 0} s G(s)\frac{1}{s} = G(0)$$

Requirement for the Feedback Loop

T(0) = 1 or at least T(0) pprox 1

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Block Diagrams

Feedback Loop

Linear State Space Models

Department

Feedback Loop: Disturbance Rejection

Output Disturbance

• Consider $\frac{Y(s)}{D(s)} = S(s) = \frac{1}{1 + C(s) G(s)}$ \rightarrow Ideally, the output signal should not change in case of a disturbance: y(t) = 0 and S(s) = 0 \rightarrow In practice, we try to design C(s) such that $S(s) \approx 0$

Gap 8

Linear State Space Models

Block Diagrams

Block Diagrams

Feedback Loop

Linear State Space Models

Feedback Loop: Desired Behavior

Example

• Temperature control system from ECE388

Disturbance Step Response

Constant Matrices and Vectors

• Dynamics matrix: $A \in \mathbb{R}^{n \times n}$

• Disturbance vector: $o \in \mathbb{R}^{n \times 1}$

• Output vector: $c^{T} \in \mathbb{R}^{1 imes n}$

• Input vector: $b \in \mathbb{R}^{n \times 1}$

• Feed-through: $d \in \mathbb{R}$

Linear State Space Models: Definitions

State Space Equations

$$\dot{x}(t) = Ax(t) + bu(t) + ow(t)$$
$$y(t) = c^T x(t) + du(t)$$

Signals

- State vector: $x(t) \in \mathbb{R}^n$
- State derivative: $\dot{x}(t) \in \mathbb{R}^n$
- Input: $u(t) \in \mathbb{R}$
- Output: $y(t) \in \mathbb{R}$
- Disturbance: $w(t) \in \mathbb{R}$

Transfer Function

$$G(s) = c^{\mathsf{T}}(sI - A)^{-1}b + d$$

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Block Diagrams

Feedback Loop

Linear State Space Models

Linear State Space Models: Example

Computation

Gap 10

Department