Exercise Sheet 10: Fundamental Limits

Problem 20:

We investigate the plant

$$
G(s)=\frac{5(s-1)}{(s+1)(s-5)}
$$

that is controlled in the basic feedback loop.
a. Write down time-domain constraints for the output y and the error e in the presence of reference steps and output disturbance steps.
Hint: Study 3 different possible locations for the closed-loop poles.
b. Why is the controller design for this plant particularly difficult?

Hint: Discuss what you expect for the three cases you found above.

Problem 21:

We consider the plant in Problem 20.
a. Perform a pole placement design such that all closed-loop poles are at $s=-10$.

Hint: Use the Sylvester matrix in Lecture 7 and compute the controller parameters in Matlab. Use the pre-filter $F(s)=6.1312$.
b. Simulate the feedback loop with the controller in a. for a reference step and a disturbance step. Compare the result with your expectation in Problem 20 b.
c. Perform a pole placement design such that all closed-loop poles are at $s=-2$. Use the pre-filter $F(s)=-0.5797$.
d. Simulate the feedback loop with the controller in \mathbf{c}. for a reference step and a disturbance step. Compare the result with your expectation in Problem 20 b.
e. Perform a pole placement design such that all closed-loop poles are at $s=-0.5$. Use the pre-filter $F(s)=-0.0179$.
f. Simulate the feedback loop with the controller in \mathbf{e}. for a reference step and a disturbance step. Compare the result with your expectation in Problem 20 b.

Problem 22: [optional]

Assume that a complementary sensitivity of $T(s)=\frac{1}{\left(s^{2}+10 s+50\right)(s+20)(s+4)}$ is achieved in the basic feedback loop.
a. Is the controller design suitable if measurement noise with a frequency of more than $100 \mathrm{rad} / \mathrm{sec}$ is encountered?

Hint: Look at the poles of $T(s)$.
b. Confirm the result in a. by simulating $T(s)$ with input noise.

Hint: Use the simulink model on the webpage and try different values for the frequency of the sinusoidal signal. Also try what happens for frequencies of $10 \mathrm{rad} / \mathrm{sec}$.

