Exercise Sheet 9: Open-loop Integrators

Problem 18:

We consider the *one-tank* system in the following figure. The tank with a surface area of A is connected to a pipe for inflow q_i [m³/sec] and a pipe that leads to outflow q_o [m³/sec]. That is, the height h of the water-level in the tank is described by the differential equation

$$\dot{h} = \frac{1}{A}(q_i - q_o).$$

In addition, it is assumed that the water inflow is provided by a pump that is actuated by an input voltage u and that is characterized by the transfer function (from input u to inflow q_i)

$$\frac{Q_i(s)}{U(s)} = G_1(s) = \frac{K_1}{1 + sT_1}$$

The plant can be represented by the following block diagram with the transfer functions $G_1(s) = \frac{K_1}{1+sT_1}$ and $G_2(s) = \frac{1}{sA}$. The parameters are $A = .1 \text{ m}^2$, $T_1 = 3 \text{ sec}$ and $K_1 = 0.03 \text{ m}^3/\text{sec}/\text{V}$.

a. Assume that $C(s) = \frac{P(s)}{L(s)}$ such that $L(0) \neq 0$. Show that it holds for disturbance steps that $\lim_{t \to \infty} e(t) \neq 0$.

We now investigate this feedback loop further for $L(s) = s^i L'(s)$ with $L'(0) \neq 0$.

- **b.** Which value of i do you need such that disturbance steps are canceled for large times?
- c. Which value of i do you need such that disturbance ramps are canceled for large times?
- **d.** Assume you choose i as computed in **c.** Is there overshoot for disturbance steps?

Problem 19:

We consider the one-tank system in Problem 18.

- **a.** Assume the controller C(s) = 0.5 is given. Realize the feedback loop in Simulink and confirm the result in Problem 18 **a.** by simulation.
- **b.** Assume that the controller $C(s) = 0.5 \frac{1+10s}{s}$ is given and confirm the result in Problem 18 b. by simulation.
- **c.** Assume that the controller $C(s) = \frac{1}{1000} \frac{(1+50\,s)^2}{s^2}$ is given and confirm the results in Problem 18 **c.** and **d.**