|                                                                                                 | Control System I<br>Lecture 10                                                                                                                                                        | Design                                                                                                  |                    |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------|
|                                                                                                 | Associate Prof. Dr. Klau                                                                                                                                                              | ıs Schmidt                                                                                              |                    |
| Depart                                                                                          | ment of Mechatronics Engineering                                                                                                                                                      | g – Çankaya University                                                                                  |                    |
| Ele                                                                                             | ctive Course in Mechatror<br>Credits (2/2/3                                                                                                                                           | nics Engineering<br>5)                                                                                  |                    |
| W                                                                                               | /ebpage: http://mece441.o                                                                                                                                                             | cankaya.edu.tr                                                                                          |                    |
| Klaus Schmidt<br>Department of Mechatronics En                                                  | gineering – Çankaya University                                                                                                                                                        |                                                                                                         | Department         |
|                                                                                                 |                                                                                                                                                                                       |                                                                                                         |                    |
| Laplace Transform                                                                               | General Zeros and Poles                                                                                                                                                               | Motivation                                                                                              | Sensors            |
| Laplace Transform<br>Laplace Transform<br>Fact from Laplace<br>• Assume that<br>its region of o | General Zeros and Poles<br>Form: General Formulation<br>ce Transform<br>$h(t) \circ H(s)$ and $H(s)$ h<br>convergence is $s > -\alpha$ . T<br>$\int_{0}^{\infty} h(t)e^{-z_{0}t}dt =$ | Motivation<br>la<br>has positive relative den<br>hen for any $z_0 > -\alpha$<br>$\lim_{s \to z_0} H(s)$ | Sensors            |
| Laplace Transform Laplace Transform Fact from Laplace Assume that its region of a               | General Zeros and Poles<br>Form: General Formula<br>ce Transform<br>$h(t) \circ - H(s)$ and $H(s)$ h<br>convergence is $s > -\alpha$ . T<br>$\int_{0}^{\infty} h(t)e^{-z_{0}t}dt =$   | Motivation<br>la<br>has positive relative de<br>hen for any $z_0 > -\alpha$<br>$\lim_{s \to z_0} H(s)$  | egree and<br>Gap 1 |

General Zeros and Poles

Motivation

Sensors

Laplace Transform

Gap 2

# General Zeros and Poles: Notation



#### Assumptions

• All closed loop poles at the left of  $s = -\alpha < 0$  (stable closed loop)

• 
$$G(s) = \frac{B(s)}{A(s)} = \frac{(s - z_0)B'(s)}{(s - p_0)A'(s)}$$
,  $\operatorname{Re}(z_0) > -\alpha$  and  $\operatorname{Re}(p_0) > -\alpha$   
 $\Rightarrow$  plant zero at  $z_0$  and plant pole at  $p_0$   
•  $C(s) = \frac{P(s)}{L(s)} = \frac{P(s)}{sL'(s)}$   
 $\Rightarrow$  Integral control  
Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Laplace Transform

General Zeros and Poles

Motivation

Sensors

## General Zeros and Poles: Properties

Plant Zero at z<sub>0</sub> and Reference or Output Disturbance Step

$$\int_0^\infty e(t)e^{-z_0t}dt=\frac{1}{z_0}$$

Gap 3



• For  $z_0 \in \mathbb{R}$  and  $z_0 < 0$ , e(t) must change sign  $\Rightarrow$  overshoot

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University



Department of Mechatronics Engineering - Çankaya University





Laplace Transform

General Zeros and Poles

Motivation

## Summary: Performance Trade-offs

#### Main Observations

- If  $|-\alpha|$  is larger than the smallest plant zero with positive real part, there will be large undershoot
- If  $-\alpha$  is smaller than the smallest plant zero with negative real part, then significant overshoot will occur
- If  $|-\alpha|$  is smaller than the real part of the largest instable open loop pole, then significant overshoot is expected
- If  $-\alpha$  is smaller than the real part of the smallest stable open loop pole, then there will be overshoot

Sensors

General Zeros and Poles

Motivation

Sensors

# Summary: Illustration

### **Pole-Zero Diagrams**

Gap 7

Department

Sensors

Gap 8

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Laplace Transform

General Zeros and Poles

Motivation

Summary: Illustration

**Pole-Zero Diagrams** 

## Fundamental Limitations: Sources

#### **Basic Feedback Loop**

Gap 9

Department

Sensors

## Sources for Limitations

- Sensors
- Actuators
- Disturbances/Noise

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Laplace Transform

General Zeros and Poles

Motivation

## Sensors: Measurement Noise

## **Noise Transfer Function**

Y(s) = -T(s)N(s)

#### **Noise Properties**

• Usually high frequency signal  $\Rightarrow N(j\omega) = 0$  for  $\omega < \omega_N$ 

#### **Noise Attenuation**

•  $|T(j\omega)|$  should be small where  $N(j\omega)$  is significant

 $\Rightarrow$  Poles of  $T(j\omega)$  should be sufficiently smaller than  $\omega_N$ 

 $\Rightarrow$  Noise poses limit for closed-loop dynamics

Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University





0.04

0.03

0.02

0.01

-0.0

-0.02

-0.03

loop

Sensor lag T = 0.01: Redesign

Sensor lag T = 0.01: Original

time [sec]

Redesign achieves stable closed

2

3

Department

position [m/sec]

- Use higher-quality sensor
   ⇒ Might be expensive
- High-pass filter for y

$$Y_m(s) = rac{1+sT}{1+s au} Y(s), \ au << T$$

- $\Rightarrow$  Might amplify high-frequency noise
- Consider sensor dynamics as part of plant
   ⇒ Perform controller design including sensor dynamics

![](_page_6_Figure_10.jpeg)