Control System Design

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Elective Course in Mechatronics Engineering Credits (2/2/3)

Webpage: http://mece441.cankaya.edu.tr

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Disturbance Feedforward

Disturbance Feedforward: Basic Situation

Basic Feedback Loop

Gap 1

Department

Assumption

• Disturbance signal *d* is directly measurable

Idea

• Compensate disturbance by additional controller component that "feeds forward" the measured disturbance signal

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Disturbance Feedforward: Design Equation

Transfer Functions

$$\frac{Y(s)}{R(s)} = \frac{G_1(s)G_2(s)C(s)}{1+G_1(s)G_2(s)C(s)}$$
 is unchanged
$$\frac{Y(s)}{D(s)} = \frac{G_2(s)(G_d(s)G_1(s)-1)}{1+G_1(s)G_2(s)C(s)}$$
 contains feedforward term

Disturbance Compensation

$$\mathit{G_d}(s)\mathit{G_1}(s) - 1 \Leftrightarrow \mathit{G_d}(s) = rac{1}{\mathit{G_1}(s)}$$

Conditions

• $G_d(s)$ has to be stable with a non-negative relative degree \Rightarrow Extend $G_d(s)$ by first-order lag elements if $G_1(s)$ has positive relative degree r > 0: $G_d(s) = \frac{1}{G_1(s)} \frac{1}{(1+s\tau)^r}$ \Rightarrow Do not compensate instable zeros in $G_1(s)$ s Schmidt

Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Disturbance Feedforward

Disturbance Feedforward: Feedback Loop

Feedback Loop for Disturbance Feedforward

Gap 2

Disturbance Feedforward: Vehicle Control Example

Framnle

	Gap 3
us Schmidt	Departm
partment of Mechatronics Engineering – Cankava University	Departing

Disturbance Feedforward: Vehicle Control Example

Disturbance Step 0.1 Extended Pole Placement 0.05 **Disturbance Feedforward** speed change [m/s] 0 -0.05 -0.1 -0.15 -0.2 -0.25<mark>L</mark> 5 10 time [sec] \Rightarrow Better disturbance rejection with disturbance feedforward Klaus Schmidt Department of Mechatronics Engineering - Çankaya University

Control Output Signals 80 **Extended Pole Placement Disturbance Feedforward** speed change [m/s] 07 07 09 09

