Control System Design

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Elective Course in Mechatronics Engineering Credits (2/2/3)

Webpage: http://mece441.cankaya.edu.tr

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Feedforward Control

Trajectory Planning

Gap 1

Department

Feedforward Control: Basic Situation

Plant Transfer Function

$$rac{Y(s)}{U(s)} = G(s) = rac{B(s)}{A(s)}$$

Design Goal

• Trajectory tracking: plant output y(t) should follow desired output signal $y_d(t)$

Transfer Block

 \Rightarrow Compute required input signal u(t) such that $y(t) = y_d(t)$

Illustration

Gap 2

Feedforward Control: Explanation

Simple Examples

Gap 3

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Feedforward Control

Trajectory Planning

Department

Feedforward Control: Input Computation

Differential Equation From G(s)

$$(a_n s^n + a_{n-1} s^{n-1} + \dots + a_0) Y(s) = (b_n s^n + b_{n-1} s^{n-1} + \dots + b_0) U(s)$$

$$\Rightarrow a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = b_n u^{(n)} + b_{n-1} u^{(n-1)} + \dots + b_0 u$$

Computation of u(t)

- Desired trajectory $y(t) = y_d(t)$ is given
- Solve the following differential equation to compute u

$$\Rightarrow b_n u^{(n)} + b_{n-1} u^{(n-1)} + \dots + b_0 u = a_n y_d^{(n)} + a_{n-1} y_d^{(n-1)} + \dots + a_0 y_d$$

Conditions

- Desired trajectory $y_d(t)$ has to be differentiable *n* times
- $y_d(t)$ should be bounded such that u stays bounded
- Assume that B(s) does not have any instable zeros

Klaus Schmidt

 $\label{eq:constraint} \text{Department of Mechatronics Engineering} - \text{Cankaya University}$

Department

Feedforward Control: Vehicle Control Example

Example

	Gap 4
Klaus Schmidt	Department
Department of Mechatronics Engineering – Çankaya University	

Feedforward Control

Trajectory Planning

Feedforward Control: Vehicle Control Example

Example

Department of Mechatronics Engineering - Çankaya University

Gap 5

Trajectory Planning: Trajectory Choice

Common Situation: Set-point Change

- $y_d(t) = y_0$ for $t \leq 0$
- $y_d(t) = f(t)$ for $0 \le t \le t_f$
- $y_d(t) = y_f$ for $t \ge t_f$

 \Rightarrow $y_d(t)$ smoothly changes its value from y_0 to y_f between time 0 and a final time t_f

<u>Illustration</u>

Gap 6

Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Feedforward Control

Trajectory Planning

Department

Trajectory Planning: Example Trajectory

Polynomial

$$f(t) = v_0 + v_1 t + v_2 t^2 + \cdots + v_l t^l$$

Requirements

- $y_d(t)$ must be *n* times continuously differentiable $\Rightarrow y_d^{(i)}(0) = 0$ and $y_d^{(i)}(t_F) = 0$ for i = 1, ..., n
- $y_d(t) = y_0$ for $t \le 0$
- $y_d(t) = y_f$ for $t \ge t_f$

 \Rightarrow We need $l = 2 \cdot (n+1) - 1 = 2n+1$

Coefficients

- Write equations for above requirements \Rightarrow / linear equations with / unknowns v_0, \ldots, v_l
- Obtain coefficients from solution of linear equations

Trajectory Planning: Verification of Conditions

Computation

Gap 7

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Feedforward Control

Trajectory Planning: Example

Example

Trajectory Planning

Department

Gap 8

Feedforward Control: Vehicle Control Example

No Disturbance

Feedforward Control

Trajectory Planning

Feedforward Control: Combination with Feedback Control

Block Diagram

Gap 9 **Explanation** • Generate input u_d to achieve desired output $y_d(t)$ • Reject disturbances by feedback controller C with output u_f \Rightarrow Feedback controller C only acts in case of deviations from $y_d(t)!$ Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University