Syllabus	Linear Systems	Transfer Functions	Step Responses	
	Control S	System Design	1	
	Control System Design			
,				
	Associate Prof	f. Dr. Klaus Schmidt		
	Department of Mechatronic			
	Elective Course in Mechatronics Engineering Credits (2/2/3)			
	Webpage: http://I	MECE441.cankaya.edu.tr		
Klaus So Departm	hmidt ent of Mechatronics Engineering – Çankaya Univers	ity	Department	
Syllabus	Linear Systems	Transfer Functions	Step Responses	
Con	tent and Structure			
Cor	tent			
•	Control Basics			
•	Classical PID design methods	5		
•	Algebraic controller design m	ethods		

- Fundamental limits
- Control architectures
- Matlab/Simulink experiments

Structure

- 2 lecture hours: Wednesday 9:20 11:10
- 2 hours for Matlab laboratory and exercises: Friday 9:20 11:10
- Office hours: Wednesday: 11:10 12:10

Department

Step Responses

Grading and Literature

Grading

- 10 Quizzes (10%)
- Problem Solving and Laboratory work (25%)
- 1 Midterm Exam (25%)
- 1 Final Exam (40 %)

Literature

- Goodwin, Graham, Graebe Stefan, Salgado, Mario: "Control System Design", Prentice-Hall, Inc., 2001 (ISBN: 0-13-958653-9) (Main Textbook)
- Astrom, Karl and Murray, Richard: "Feedback Systems: An Introduction for Scientists and Engineers", Princeton University Press, 2008 (ISBN: 0-691-13576-2)
- Killian, Christopher: "Modern Control Technology", Thompson Delmar Learning, 2005 (ISBN: 1-4018-5806-6)

Klaus Schmidt	
Department of Mechatronics Engineering – Çankaya University	

Syllabus

Linear Systems

Transfer Functions

Illustration

Linear Systems: Definition

System

- Input signal *u*
- Output signal y
- Operator H that maps u to y

$$y(t) = H\{u(t)\}$$

Linear System

• Input signal as superposition of different input signals

$$u(t) = \alpha_1 u_1(t) + \alpha_2 u_2(t), \quad (\alpha_1, \alpha_2 \in \mathbb{R})$$

• Output signal as superposition of corresponding output signals

$$y(t) = H\{\alpha_1 u_1(t) + \alpha_2 u_2(t)\} = \alpha_1 H\{u_1(t)\} + \alpha_2 H\{u_2(t)\}$$

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Department

Svl	labus	

Transfer Functions

Step Responses

Linear Systems: Examples

Illustration

Gap 1

Department

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Syllabus Linear Systems Transfer Functions Step Responses Linear Systems: Modeling **RLC-Circuit Example** Gap 2 i \overline{C} RLv• Input: u = i• Output: y = v**Differential Equation** $C \cdot \frac{d^2y}{dt^2} + \frac{1}{R} \cdot \frac{dy}{dt} + \frac{1}{L} \cdot y = \frac{du}{dt}$ Klaus Schmidt Department Department of Mechatronics Engineering - Çankaya University

Linear Time-invariant Ordinary Differential Equation
$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 \dot{y} + a_0 y =$
$b_m u^{(m)} + b_{m-1} u^{(m-1)} + \cdots + b_1 \dot{u} + b_0 u$
Notation
 y: output signal (in the time domain)
• <i>u</i> : input signal (in the time domain)
• $y^{(i)}(u^{(i)})$: <i>i</i> -th time derivative of $y(u)$
• a_i, b_i : coefficients in \mathbb{R}
• <i>n</i> : highest derivative of v
• m highest derivative of μ
Klaus Schmidt Department Department of Mechatronics Engineering – Çankaya University
Syllabus Linear Systems Transfer Functions Step Responses
Transfer Functions: Laplace Domain Representation Laplace Transform • Transformed input signal: $u \longrightarrow \mathcal{L}(u) = U(s)$ • Transformed output signal: $y \longrightarrow \mathcal{L}(y) = Y(s)$ Input/Output Relation $\frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} =: G(s) = \frac{B(s)}{A(s)}$
Transfer Block Representation • Input/output variables u, y • Dynamic relation G

Linear Systems: General Model

Department

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Syllabus

Svl	labus

Transfer Functions: Examples

RLC-Circuit

Gap 3

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Syllabus

Linear Systems

Transfer Functions

Step Responses

Department

Transfer Functions: Properties

$$\frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} =: G(s) = \frac{B(s)}{A(s)}$$

Poles

• Zeros of the denominator polynomial: s such that

$$A(s) = a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0 = 0$$

Zeros

• Zeros of the numerator polynomial: s such that

$$B(s) = b_m s^m + b_{m-1} s^{m-1} + \cdots + b_1 s + b_0 = 0$$

Relative Degree

 Difference between polynomial degrees of denominator and numerator

$$r = \deg A(s) - \deg B(s)$$

• G(s) is called *proper* if $r \ge 0$

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

-		
CI		
∇VI	labus	
<u> </u>	101000	

Linear Systems

Transfer Functions

Step Responses

Gap 4

Transfer Functions: Properties

Example

Klaus Schmidt Department Department of Mechatronics Engineering – Çankaya University Syllabus Linear Systems Transfer Functions Step Responses Transfer Functions: Properties

Pole-Zero Diagram

Stability

A system is called (bounded input bounded output – BIBO) stable if any bounded input signal u leads to a bounded output signal y

Transfer Functions

• G(s) is BIBO stable if all of its poles lie in the open left half plane of the complex plane

Gap 5

Svl	labus

Linear Systems

Transfer Functions

Transfer Functions: Properties

Example

Syllabus	Linear Systems	Transfer Functions	Step Responses
Department of Mech	atronics Engineering – Çankaya Univer	sity	
Klaus Schmidt			Department
			Cup o

Step Responses: Computation

Definition

The unit step response is the output response of a dynamic system to the Heaviside step function applied at its input

• Heaviside step function: $\sigma(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{otherwise} \end{cases}$

Gap 7

Department

Step Response Computation

• Input:
$$u(t) = \sigma(t) \longrightarrow U(s) = \frac{1}{s}$$

• Output:
$$Y(s) = G(s)U(s) = G(s)\frac{1}{s}$$
 •— $\circ y(t) = \mathcal{L}^{-1}(G(s)\frac{1}{s})$

Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University

Transfer Functions: Summary and Remarks

Summary

- Mathematical plant model describes the dynamic input/output relation of technical processes
- This lecture mostly considers plants that can be modeled by linear time-invariant ordinary differential equations
- Laplace transform leads to equivalent transfer function representation in the image domain
- Graphically, plant models are shown as transfer blocks

Remarks

- Not all technical processes can be modeled by linear ODEs
 - \Rightarrow Linearization yields linear model (see Lecture 3)
 - \Rightarrow Advanced synthesis methods for nonlinear systems are required (see ECE 564)