Control System Design

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Elective Course in Mechatronics Engineering Credits (2/2/3)

Webpage: http://MECE441.cankaya.edu.tr

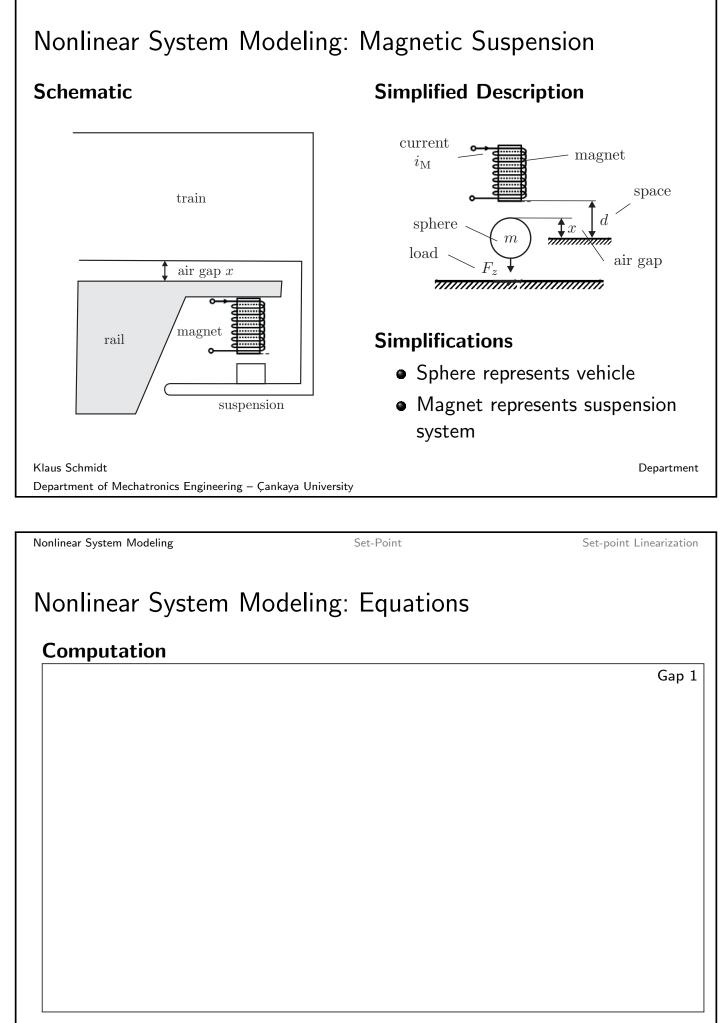
Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Nonlinear System Modeling

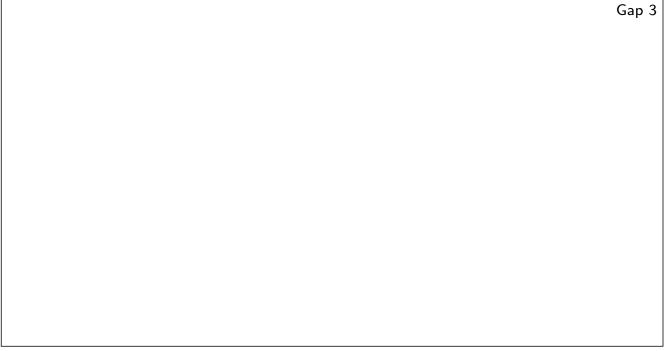
Set-Point

Set-point Linearization

Department


Nonlinear System Modeling: Remarks

LTI System Operators


- Proportional gain
- Differentiation
- Integration
- Lead/lag components
- Summations
- \Rightarrow All linear operators can be represented by transfer functions

Nonlinear Systems

- Contain nonlinear system operators
- \Rightarrow No transfer function representation

State Equations	Notation
$\dot{x} = f(x, u, w)$ y = h(x, u)	 state: x, output: y, input: u, disturbance w f: continuous in x, u, w and additional assumptions (see for example ECE 564) h: continuous in x, u
Example	Gap
Klaus Schmidt	Departm
Klaus Schmidt Department of Mechatronics Engineer	

Nonlinear System Modeling: Remarks

Synthesis and Analysis Techniques for Nonlinear Systems

- Beyond the scope of this lecture \rightarrow Master-level course ECE 564
- Extensive literature

 \rightarrow Alberto Isidori: "Nonlinear Control Systems", Springer, 1995 (ISBN: 3-54-019916-0)

 \rightarrow Hassan K. Khalil: "Nonlinear Systems", Prentice Hall, 2002 (ISBN: 0-13-067389-7)

Set-point Linearization

• Consider system behavior in the vicinity of a given set-point

- \rightarrow Assume almost linear behavior close to the set-point
- \rightarrow Find a linear system model to approximate the nonlinear system

Klaus Schmidt	
Department of Mechatronics Engineering – Cankava University	

Nonlinear System Modeling

Set-Point

Set-point Linearization

Department

Set-Point: Definition

Set-point Definition

A set point is a stationary (non-changing) state of a system where the system output maintains a constant set-point value y_{SP}

Computation of a Set-point

- Given: y_{SP}, w_{SP}
- We want to compute x_{SP} (constant set-point value of the state) and u_{SP} (constant set-point value of the input)
- Computation

Klaus Schmidt

$$y_{SP} = h(x_{SP}, u_{SP})$$
$$0 = \dot{x} = f(x_{SP}, u_{SP}, w_{SP})$$

 \Rightarrow Solve for x_{SP} , u_{SP}

Department of Mechatronics Engineering – Çankaya University

Set-Point: Example

Magnetic Suspension

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Nonlinear System Modeling

Set-point Linearization: Description

Explanation

- Compute a "small signal" approximation of the nonlinear system that is valid close to the set-point
- Introduce "Difference variables" (deviation from the set-point)

•
$$\Delta x = x - x_{SP}$$
, $\Delta y = y - y_{SP}$, $\Delta u = u - u_{SP}$, $\Delta w = w - w_{SP}$

Taylor Series Expansion

$$\Delta \dot{x} = \dot{x} \approx \underbrace{f(x_{SP}, u_{SP}, w_{SP})}_{= 0} + \underbrace{\frac{\partial f}{\partial x}}_{A} |_{SP} \Delta x + \underbrace{\frac{\partial f}{\partial u}}_{b} |_{SP} \Delta u + \underbrace{\frac{\partial f}{\partial w}}_{o} |_{SP} \Delta w$$

$$= A \Delta x + b \Delta u + o \Delta w$$

$$\Delta y \approx \underbrace{h(x_{SP}, u_{SP}) - y_{SP}}_{= 0} + \underbrace{\frac{\partial h}{\partial x}}_{C} |_{SP} \Delta x + \underbrace{\frac{\partial h}{\partial u}}_{d} |_{SP} \Delta u = c^T \Delta x + d \Delta u$$

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University Department

Gap 4

Set-point Linearization

Department

Set-Point

Set-Point

Set-point Linearization

Gap 5

Department

Gap 6

Set-point Linearization

Set-point Linearization: Example

Example Equations

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -g + \frac{K_M}{m} \frac{u^2}{(d - x_1)^2} - \frac{1}{m} w$
 $y = x_1$

Set-Point

Computation

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Nonlinear System Modeling

Set-Point

Set-point Linearization: Example

Computation

Klaus Schmidt

Set-Point

Set-point Linearization: Magnetic Suspension Example

Linearized State Equations

Gap 7

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Nonlinear System Modeling

Set-Point

Set-point Linearization

Department

Linearization: Summary

Task

• Characterize nonlinear system behavior close to a set-point

Method

- Write system representation in terms of "difference variables"
- Use first-order Taylor series approximation for nonlinearities

Result

- We get a linear system model for the nonlinear system
- Linear methods can be used for the nonlinear system close to the set-point
- Important restriction \rightarrow Linear model is only valid in the vicinity of the set-point