Control System Design

Lecture 6

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Elective Course in Mechatronics Engineering Credits (2/2/3)

Webpage: http://mece441.cankaya.edu.tr

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Internal Model Control

Smith Predictor

Department

Internal Model Control (IMC): Youla Parametrization

Prerequisites for Youla Parametrization

• Stable plant: G(s), positive relative degree

Goal

- Design T(s) = Q(s)G(s)
- Determine Q(s) stable and with non-negative relative degree
- Compute controller $C(s) = \frac{Q(s)}{1-T(s)}$

Block Diagram Representation of Youla Parametrization

Gap 1

Internal Model Control (IMC): Equivalent Representa	tion
IMC-Control Loop	
	Gap 2
\Rightarrow No feedback if the plant model is exact and there is no disturbation	nce
Behavior for exact Plant Model	
• $T = QG$	
• $S = 1 - QG$	
Klaus Schmidt	Department
Department of Mechatronics Engineering – Çankaya University	

Internal Model Control

Smith Predictor

Internal Model Control (IMC): Non-exact Plant Model

Behavior for non-exact Plant Model

$$T = \frac{C\hat{G}}{1+C\hat{G}} = \frac{\frac{Q}{1-QG}\hat{G}}{1+\frac{Q}{1-QG}\hat{G}} = \frac{Q\hat{G}}{1+Q(\hat{G}-G)}$$
$$S = \frac{1}{1+\frac{Q}{1-QG}\hat{G}} = \frac{1-QG}{1+Q(\hat{G}-G)}$$

Robustness of IMC

- Assume $\hat{G} = G(1 + \delta G)$
- Assume upper bound estimate for uncertainty $|\delta G(s)| < B(s)$
- Stability of the IMC-loop requires $|Q(j\omega)G(j\omega)B(j\omega)| < 1$ for all ω

Smith Predictor: Time-Delay Plant

Transfer function

 $G(s) = \tilde{G}(s)e^{-s\tau}$

• Time-delay: τ

Example

Gap 3

Department

Smith Predictor

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Internal Model Control

Smith Predictor: Basics

Prerequisites

• Delay plant: $G(s) = \tilde{G}(s)e^{-s\tau}$, $\tilde{G}(s)$ rational in s

Goal

- Design of preliminary controller $\hat{C}(s)$ without delay component $e^{-s\tau}$
- Consideration of delay in particular controller structure

Gap 4

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Smith Predictor: Properties

Controller Structure

- Compensate delayed plant reaction by parallel model $\hat{G}(s)e^{-s\tau}$ (ideally $\tilde{G}(s) = \hat{G}(s)$ and $y = \hat{y}$)
- Ideally, control loop is formed by $\hat{C}(s)$ and $\hat{G}(s)$ (predicts reaction of plant without delay)

 \Rightarrow Controller design for $\hat{G}(s)$

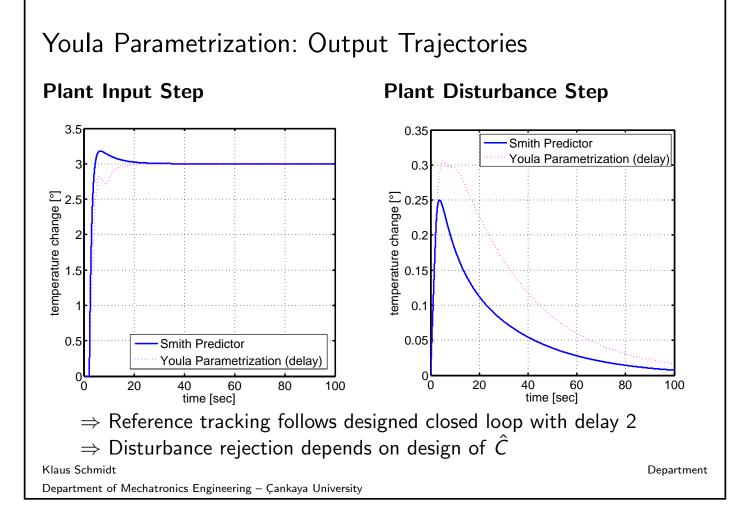
• Plant output y follows internal output \tilde{y} with delay τ

Equivalent Loop

Gap 5

Department

Smith Predictor


Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Internal Model Control

Smith Predictor: Example

Temperature control

Gap 6


```
Internal Model Control Smith Predictor: Smith Predictor
Smith Predictor: Concluding Remarks
Usage

Stable delay plants
Standard design for delay-free part of the plant
"Delay outside the loop"
Limitations

Not applicable to instable plants
Possible degradation of disturbance rejection due to controller structure
```