Motivation	Pole Placement	Pre-filter
	Control System Design	
	Lecture 7	
	Associate Prof. Dr. Klaus Schmidt Department of Mechatronics Engineering – Çankaya University	
	Elective Course in Mechatronics Engineering Credits (2/2/3)	
	Webpage: http://mece441.cankaya.edu.tr	
Klaus Schmidt Department of M	lechatronics Engineering – Cankava University	Department

Motivation

Pole Placement

Motivation: Basic Setup

Prerequisites

• General plant: $G(s) = \frac{B(s)}{A(s)} = \frac{b_0 + \dots + b_n s^n}{a_0 + \dots + a_n s^n}$ (A(s), B(s) coprime) without time delay

coprime) without th

Controller
•
$$C(s) = \frac{P(s)}{L(s)} = \frac{p_0 + \dots + p_m s^m}{l_0 + \dots + l_m s^m}$$

Observation

• Each zero of AL + BP is a pole of at least one sensitivity

$$T = \frac{GC}{1+GC} = \frac{BP}{AL+BP} \quad S_{i} = \frac{G}{1+GC} = \frac{BL}{AL+BP}$$
$$S = \frac{1}{1+GC} = \frac{AL}{AL+BP} \quad S_{u} = \frac{C}{1+GC} = \frac{AP}{AL+BP}$$

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University Pre-filter

Pole Placement

Department

Pre-filter

Gap 1

Motivation: Goal

Goal

- Place closed-loop poles at pre-specified pole locations
 - \rightarrow Closed-loop polynomial $R(s) = r_0 + r_1 s + \cdots + r_p s^p$
 - \rightarrow Stability, closed-loop dynamics

Design Problem

Given a plant $G(s) = \frac{B(s)}{A(s)}$ and a desired closed-loop denominator polynomial $R(s) = r_0 + \dots + r_p s^p$, find a controller transfer function $C(s) = \frac{P(s)}{L(s)}$ such that A(s)L(s) + B(s)P(s) = R(s).

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Motivation

Pole Placement

Pole Placement: Properties

Basic Properties

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Pre-filter

Pole Placement: Basic Procedure

Design Idea

• Use controller transfer function of order $m \ge n-1$:

$$C(s) = \frac{P(s)}{L(s)} = \frac{p_0 + p_1 \, s + \dots + p_m \, s^m}{l_0 + l_1 \, s + \dots + l_m \, s^m}$$

$$R(s) = A(s)L(s) + B(s)P(s)$$

• Compute the free parameters l_0, \ldots, l_m and p_0, \ldots, p_m by comparison of coefficients

Result

- P-control for plants with n = 1
- Lead/lag controllers for plants with n > 1

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Motivation

Pole Placement

Pole Placement: Simple Example

Computation

Gap 2

Department

Pre-filter

Pole Placement: Simple Example

Computation

Gap 3

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Motivation

Pole Placement

Pre-filter

Department

Pole Placement: General Procedure

Comparison of Coefficients

A(s)L(s) + B(s)P(s) = R(s) $(a_0 + \cdots a_n s^n)(l_0 + \cdots l_m s^m) + (b_0 + \cdots b_n s^n)(p_0 + \cdots p_m s^m) = R(s)$

Gap 4

Pole Placement: Solution

Evaluation

Gap 5

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Motivation

Pole Placement

Pole Placement: Solution

Evaluation

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Department

Department

Pre-filter

Gap 6

Motivation

Pole Placement

Pole Placement: Example

Vehicle Control Example

Gap 7

Pre-filter

Pre-filter

Pole Placement: Example

Vehicle Control Example

Gap 8

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Motivation

Pole Placement

Pre-filter

Department

Pole Placement: Simulation

Department of Mechatronics Engineering - Çankaya University

Pre-filter: Example

Vehicle Control Example with Pre-filter

Gap 11

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Motivation

Pole Placement

Pre-filter

Department

Pre-filter: Simulation

