Reminder	Feedback Loop Analysis	Pole Placement
	Control System Design	
	Lecture 8	
	Associate Prof. Dr. Klaus Schmidt	
	Department of Mechatronics Engineering – Çankaya University	
	Elective Course in Mechatronics Engineering Credits (2/2/3)	
	Webpage: http://mece441.cankaya.edu.tr	
Klaus Schmidt		Department
Department of Mee	chatronics Engineering – Çankaya University	

Reminder

Feedback Loop Analysis

Reminder: Pole Placement

Prerequisites

• General plant: $G(s) = \frac{B(s)}{A(s)} = \frac{b_0 + \dots + b_n s^n}{a_0 + \dots + a_n s^n}$ (A(s), B(s) coprime) without time delay

Controller

•
$$C(s) = \frac{P(s)}{L(s)} = \frac{p_0 + \dots + p_m s^m}{l_0 + \dots + l_m s^m}$$

Observation

• Each zero of AL + BP is a pole of at least one sensitivity

$$T = \frac{GC}{1+GC} = \frac{BP}{AL+BP} \quad S_{i} = \frac{G}{1+GC} = \frac{BL}{AL+BP}$$
$$S = \frac{1}{1+GC} = \frac{AL}{AL+BP} \quad S_{u} = \frac{C}{1+GC} = \frac{AP}{AL+BP}$$

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University Pole Placement

Reminder: Solution

Task

• Place closed-loop poles at pre-specified pole locations \rightarrow Closed-loop polynomial $R(s) = r_0 + r_1 s + \cdots + s^p$

Procedure

- Choose controller degree as $m \ge n-1$ (usually m = n-1)
- Compute p = m + n = n 1 + n = 2n 1
- Find free parameters l_0, \ldots, l_m and p_0, \ldots, p_m from design equation A(s) L(s) + B(s) P(s) = R(s)
- Use pre-filter to compensate stable zeros in T(s)

Disadvantage

- Controller without integrator
 - ightarrow steady-state error is non-zero

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Reminder

Feedback Loop Analysis

Pole Placement

Department

Feedback Loop Analysis: Steady-state Error

Reference and Disturbance Steps

(b)
$$s(l_0 + l_1 s + \cdots + l_{m-1} s^{m-1})$$

Sinusoidal Reference and Disturbance Signals

• Recall the frequency response for stable transfer functions G(s) and sinusoidal input $u(t) = u_0 \sin(\omega_0 t)$

$$y(t) = u_0 |G(j\omega_0)| \sin(\omega_0 t + \angle (G(j\omega_0)))$$

• Reference tracking for $r(t) = r_0 \sin(\omega_0 t)$ $\rightarrow T(j\omega_0) = 1$

• Disturbance rejection for $d(t) = d_0 \sin(\omega_0 t)$ $\rightarrow S(j\omega_0) = 0$ and $S_i(j\omega_0) = 0$

Feedback Loop Analysis: Properties

Computation

Gap 1

 \Rightarrow We should include the factor s or $s^2+\omega_0^2$ in the controller denominator

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Reminder

Feedback Loop Analysis

Pole Placement

Department

Extended Pole Placement: Goal

Goal

- Place closed-loop poles at pre-specified pole locations \rightarrow Stability, closed-loop dynamics
- Place some controller poles at pre-specified locations \rightarrow zero steady-state error for open-loop pole at s = 0

Design Problem

Given a plant $G(s) = \frac{B(s)}{A(s)}$, a desired closed-loop denominator polynomial $R(s) = r_0 + \dots + r_p s^p$ and a polynomial $\hat{L}(s)$ of degree κ , find a controller $C(s) = \frac{P(s)}{\hat{L}(s)L(s)}$ such that $A(s)\hat{L}(s)L(s) + B(s)P(s) = R(s)$.

Extended Pole Placement: Properties

Basic Properties

Gap 2

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Reminder

Feedback Loop Analysis

Pole Placement

Department

Extended Pole Placement: Procedure

Design Idea

• Consider polynomial $\hat{L}(s)$ as part of the plant denominator

 $\hat{A}(s) = A(s)\hat{L}(s)$ (the coefficients of $\hat{L}(s)$ are fixed)

• Design equation

$$R(s) = \hat{A}(s)L(s) + B(s)P(s)$$

⇒ Compute the free parameters $l_0, \ldots, l_{m-\kappa}$ and p_0, \ldots, p_m ⇒ Minimum controller order: $m \ge n + \kappa - 1$

Coefficient Matching

$$\hat{A}(s)L(s) + B(s)P(s) = R(s)$$

$$(\hat{a}_0 + \cdots \hat{a}_{n+\kappa}s^{n+\kappa})(l_0 + \cdots l_{m-\kappa}s^{m-\kappa}) + (b_0 + \cdots b_ns^n)(p_0 + \cdots p_ms^m) = R(s)$$

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Extended Pole Placement: Solution

Evaluation

Gap 3

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Reminder

Feedback Loop Analysis

Pole Placement

Department

Extended Pole Placement: Solution

Solution Method

• Determine controller coefficients by comparison of coefficients

Control with Integrator

- Specify one controller pole at s = 0: $\hat{L}(s) = s$ and $\kappa = 1$
- Controller degree: $m = n + \kappa 1 = n$
 - \Rightarrow PI-control for plant with degree 1: m = 1 + 1 1 = 1
 - \Rightarrow PID-control for plant with degree 2: m = 2 + 1 1 = 2
- Higher order plants lead to controllers that cannot be realized by classical PID control

Controller for Sinusoidal References/Disturbances (frequency ω_0)

• Specify controller poles at $s = \pm j\omega_0$: $\hat{L}(s) = s^2 + \omega_0^2$ and $\kappa = 2$

• Controller degree: $m = n + \kappa - 1 = n + 1$

Extended Pole Placement: Example

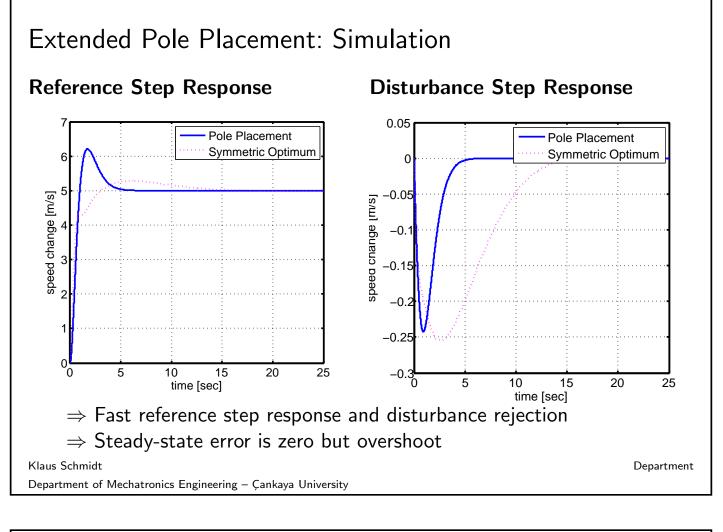
Vehicle Control Example with Integral Control

Gap 4

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Reminder

Feedback Loop Analysis


Pole Placement

Department

Extended Pole Placement: Example

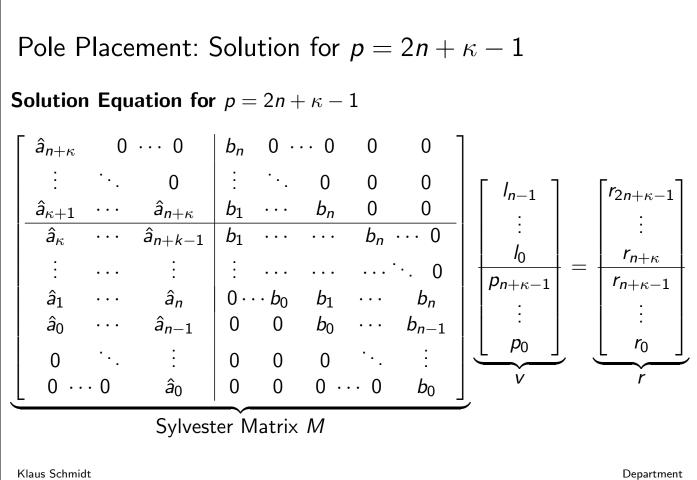
Vehicle Control Example with Integral Control

Gap 5

Reminder

Feedback Loop Analysis

Pole Placement


Disturbance Step Response

Extended Pole Placement: Simulation with Pre-filter

Reference Step Response

0.1 **Pole Placement** Pole Placement Pole Placement with Filter Pole Placement with Filter 6 0.05 5 speed change [m/s] speed change [m/s] -0.05 3 -0.1 2 -0.15 -0. C -0.25 5 15 20 25 10 5 10 15 20 25 time [sec] time [sec] \Rightarrow Fast reference step response without overshoot \Rightarrow No change in the disturbance rejection (filter outside the loop) Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University

Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University